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Two- and three-dimensional numerical simulations are performed to study interfacial
waves in a periodic domain by imposing a source term in the horizontal momentum
equation. Removing the source term before breaking generates a stable interfacial
wave. Continued forcing results in a two-dimensional shear instability for waves
with thinner interfaces, and a convective instability for waves with thick interfaces.
The subsequent three-dimensional dynamics and mixing is dominated by secondary
cross-stream convective rolls which account for roughly half of the total dissipation
of wave energy. Dissipation and mixing are maximized when the interface thickness
is roughly the same size as the amplitude of the wave, while the mixing efficiency
is a weak function of the interface thickness. The maximum instantaneous mixing
efficiency is found to be 0.36 ± 0.02.

1. Introduction
Breaking internal waves are responsible for a significant portion of mixing of heat,

salt and nutrients throughout much of the world’s oceans. According to Munk &
Wunsch (1998): ‘Without deep mixing, the ocean would turn, within a few thousand
years, into a stagnant pool of cold, salty water . . . ’

Based on a balance between mixing and deep-water upwelling, the average eddy
diffusivity of the ocean is roughly 10−4 m2 s−1. Despite this prediction, Munk &
Wunsch (1998) report that profiler measurements in the ocean away from boundaries
yield diffusivities of the order of 10−5 m2 s−1. One possible explanation of this
dichotomy is that the eddy diffusivity is very large in small localized turbulent
patches over a small percentage of the ocean. The most likely source for this elevated
diffusivity is internal wave breaking.

Measurements reveal clear signatures of large-amplitude internal waves. For
example, the measurements of Stanton & Ostrovsky (1998) reveal a pronounced
signature of solitary internal waves propagating along the thermocline off the coast
of Oregon. Their results provide evidence to the existence of internal waves of
extremely large amplitude that propagate in the littoral ocean. Petruncio, Rosenfeld &
Paduan (1998) cite observations of internal wave amplitudes of 60–120 m in depths
ranging from 120 to 220 m in Monterey Bay. These waves are believed to propagate in
some nonlinear fashion in which they ultimately end up breaking. Rosenfeld & Kunze
(1998) provide evidence for this hypothesis in their internal wave measurements in
Monterey Canyon, where they show that there is a peak in the M6 internal tide
component that is 10% in magnitude of the M2 component. This indicates a strong
nonlinear cascade toward higher frequencies that is probably due to internal wave
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breaking. However, this cascade is so intermittent and sparse that it is difficult
to measure actual breaking events in the ocean. Large-scale ocean models cannot
feasibly capture such small-scale events, so they must be parameterized through some
diffusivity based on local flow variables. These parameterizations require a detailed
understanding of the mechanisms that lead to and follow a breaking event.

Of particular interest in the study of breaking progressive interfacial waves is a
determination of the initial instability that leads to breaking. In their experiments on
breaking interfacial waves on a slope, Michallet & Ivey (1999) show that the initial
instability leading to breaking is convective. That is, the maximum fluid velocity umax

within the wave exceeds the wave speed c, and a convective instability occurs when
the heavier lower layer fluid overlies the lighter layer fluid. This same mechanism is
what leads to breaking for surface waves at and away from boundaries. Away from
boundaries, progressive surface waves break owing to a convective instability when
the angle of the crest reaches 120◦ (Stokes 1880). The situation is not as clear for
progressive interfacial waves away from boundaries. While the fluid velocity within
the wave increases with increasing steepness, so does the shear that occurs at the
interface between the two layers. As a result, both a convective instability and a shear
instability are likely to occur. In their fifth-order expansion of deep-water interfacial
wave properties in the steepness ka, where k = 2π/L is the wavenumber and a is the
wave amplitude, Tsugi & Nagata (1973) hypothesize that shear instabilities occur
before the fluid velocity exceeds the wave speed, indicating that a shear instability
results before a convective instability for large-amplitude interfacial waves. Holyer
(1979), on the other hand, calculates the maximum steepness of an irrotational
Boussinesq interfacial wave numerically to thirty-first order in the steepness ka and
shows that umax >c when ka =1.1. Clearly, the only condition that will limit a
breaking interfacial wave in an irrotational computation is a convective instablity.
This same result is also obtained by Meiron & Saffman (1983), who compute the
critical steepness for overhanging interfacial gravity waves. Thorpe (1978) studies the
behaviour of progressive interfacial waves with and without the presence of mean
shear using asymptotic expansions as well as laboratory experiments. To third order in
ka without shear, his calculations and experiments show that u > c beneath the crest
when ka = 0.33, which is substantially lower than the value of ka = 1.1 calculated by
Holyer (1979). This discrepancy results from Thorpe’s calculations involving a lower
depth that is 1/3 the depth of the upper layer, unlike the calculations of Holyer (1979)
which were performed for infinite layer depths.

The ambiguous nature of what governs the initial instability for breaking progressive
interfacial waves away from boundaries also exists in the study of breaking internal
waves away from boundaries in critical layers. In their two-dimensional direct
numerical simulations, Winters & D’Asaro (1989) show that intensified wave shear
near the critical level leads to a shear instability, despite the appearance of statically
unstable density gradients. Winters & Riley (1992) later confirm this two-dimensional
behaviour in their stability analysis using the Taylor–Goldstein equation (Drazin
1977) with approximate velocity and density fields that closely represent those in
a critical layer. While they show that the predominant instability resulting from
streamwise perturbations is one of shear, which actually supresses two-dimensional
convective instabilities, they show that spanwise perturbations result in a convective
instability. Lin et al. (1993) use a similar procedure, but instead use the actual velocity
and density fields from their two-dimensional direct numerical simulations as the
velocity and density fields in the Taylor–Goldstein equation. After applying Squire’s
theorem to the flow, they conclude that a three-dimensional study would be required
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to confirm the nature of the most unstable cross-stream instability, which is convective.
Likewise, Dörnbrack & Gerz (1995) cite from their two-dimensional simulations of a
critical level that most of the energy is contained in convectively driven cores that are
naturally three-dimensional, but are being inhibited by the two-dimensional nature
of the simulation. Using three-dimensional simulations, Winters & D’Asaro (1994)
show that the dominant instability is clearly a three-dimensional convective instability
that results in spanwise convective rolls, which is confirmed by the three-dimensional
simulations of critical layers in a shear flow over a wavy bed of Dörnbrack (1998),
who also finds that the dominant instability is convective. Both papers find that a
three-dimensional convective mixing layer develops just below (or above) the critical
level that develops in conjunction with spanwise rolls associated with Rayleigh–Taylor
convective instabilities. The mixing layer develops a slight distance away from the
critical level as a result of the nonlinear transfer of wave energy to the mean flow,
which effectively moves the critical level toward the wave source.

Along with a determination of the initial instability, of critical importance in the
understanding of the dynamics of breaking progressive interfacial waves is the mixing
efficiency of the breaking process. During a turbulent event in a stratified flow, at
the same time energy is converted irreversibly into heat owing to viscous dissipation,
energy is also converted irreversibly into mixing of the background density field. How
efficiently energy is converted into mixing the background density field is termed the
mixing efficiency. The maximum theoretical mixing efficiency is that of a Rayleigh–
Taylor instability, in which 50% of the total energy lost is converted into background
potential energy (Linden & Redondo 1991). From first principles, McEwan (1983a)
shows that the mixing efficiency must lie in the neighbourhood of 0.25–0.50, and
depends on the ratio Lc/δ, where Lc is the initial displacement of a fluid particle
perturbed from its rest state, and δ is the final thickness of the mixed layer. Thompson
(1980) shows that the mixing efficiency is given by η = Ri, where Ri is the gradient
Richardson number of the flow. Because a pure Kelvin–Helmholtz instability results
when Ri < 1/4, the generally accepted quantity of the mixing efficiency for shear-
induced events is 0.25. Ivey & Imberger (1991) define a flux Richardson number Rf ,
in which the mixing efficiency is given by the ratio of the buoyancy flux to the net
available turbulent mechanical energy. They show that for shear flows in fluids with
a Prandtl number greater than 1, Rf peaks at 0.2.

Laboratory and numerical experiments of breaking internal waves arrive at mixing
efficiencies varying from 0.13 to 0.38. To our knowledge, the only computation of
the mixing efficiency of a breaking interfacial wave is that computed experimentally
for breaking interfacial waves on slopes by Michallet & Ivey (1999), which peaks
at 0.25. In his continuously stratified standing-wave experiments, McEwan (1983a)
generates finite-amplitude internal waves with a paddle in a square tank, and computes
an average mixing efficiency of 0.26 ± 0.06. Lin et al. (1993) estimate the mixing
efficiency for a critical layer of 1/6 for the two-dimensional case and 1/8 for the three-
dimensional case. They hypothesize that these approximations are rather high, since
their model lacks significant resolution, which indicates that a dominant component
of the mixing results from numerical diffusion. In his simulations of critical layers,
Dörnbrack (1998) computes a mixing efficiency of roughly 0.2. The largest value
of the mixing efficiency is that computed for internal waves on critically sloped
topography by Slinn & Riley (1998a, b). In their numerical simulations, they compute
mixing efficiencies of between 0.32 and 0.38.

Breaking interfacial waves are akin to breaking free-surface waves in many respects.
However, the computational issues associated with each are substantially different.
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Turbulent free-surface simulations that do not involve breaking map the domain onto
one that follows the surface with the use of a ζ -coordinate system, such as the large-
eddy simulation of nonlinear free-surface waves of Hodges & Street (1999). When
capturing the breaking physics is desired, it is necessary to keep track of the complex
interface and, in some cases, compute the surface tension if the Bond number is low
enough. Most notable of these methods is the marker and cell technique developed
by Harlow & Welch (1965), or the interface tracking method of Puckett et al. (1997).
One of the very few Navier–Stokes simulations of Boussinesq interfacial waves in
the literature is presented by Chen et al. (1999) as a test case in the implementation
of the volume of fluid (VOF) method to simulate breaking free-surface waves. They
simulate an interfacial wave by setting the density ratio between the upper and lower
layers to 0.01, but only to test the ability of the code to match the correct attenuation.
As with all VOF methods, mixing across the interface cannot be computed.

In this paper we employ two- and three-dimensional direct numerical simulations
to answer two fundamental questions associated with breaking progressive interfacial
waves away from boundaries that have not been addressed in the literature. First,
because the findings with regard to breaking interfacial waves have been ambiguous,
we determine the critical amplitude of breaking progressive interfacial waves and
the associated limiting instability. Secondly, we compute the mixing efficiency of
the breaking process and analyse the three-dimensional structure of the ensuing
turbulence.

2. Governing equations and numerical method
The forced Boussinesq equations of motion with constant kinematic viscosity are

given by

∂ui

∂t
+

∂

∂xj

(uiuj ) = − 1

ρ0

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− g

ρ0

(ρ − ρr ) δi3 + Fδi1, (2.1)

subject to the continuity constraint

∂ui

∂xi

= 0, (2.2)

where the density field evolves according to

∂ρ

∂t
+

∂

∂xj

(ρuj ) = κ
∂2ρ

∂xj∂xj

, (2.3)

and the interfacial wave forcing function F is defined in § 3.1. The Einstein summation
convention is assumed with i, j =1, 2, 3 and x3 is the vertical coordinate. Here, ν is
the kinematic viscosity of water and κ is the thermal diffusivity of heat in water. It is
assumed that the pressure field represents a departure from some arbitrary hydrostatic
reference state. If pT represents the total pressure, then it is related to the pressure in
equation (2.1) via

pT (x, y, z, t) =p(x, y, z, t) + pr (z), (2.4)

where pr (z) is the reference pressure field and is related to the reference density field
ρr (z) by

∂pr (z)

∂z
= −ρr (z)g. (2.5)
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Figure 1. (a) Physical and (b) computational set-up of the domain used to study breaking
interfacial waves. The density difference is �ρ/ρ0 = 0.03 and the upper and lower boundaries
are free-slip, while the lateral boundaries are periodic. Every fourth grid cell is plotted in (b)
for clarity. Waves propagate from left to right.

This substitution is useful for computations of stratified flows in which the solution
is started from rest, for which the reference pressure field is taken as the initial
hydrostatic pressure field.

The numerical discretization of the momentum equations is similar to that carried
out by Zang, Street & Koseff (1994), except the pressure correction method (Armfield
& Street 2000) is employed to obtain second-order accuracy in time. In the work
of Zang, Street & Koseff (1994), the diffusive terms are discretized with a Crank–
Nicholson scheme and all other terms are left explicit with the second-order Adams–
Bashforth scheme. Momentum is advected with the QUICK scheme of Leonard
(1979). During wave growth, scalar advection is computed with a background
potential energy preserving scheme (Fringer 2003) which maintains the background
potential energy during wave growth. When wave breaking begins, scalar advection
is computed with the SHARP scheme (Leonard 1987). The discrete momentum and
transport equations are solved using approximate factorization and the pressure
Poisson equation is solved with the multigrid method.

3. Simulation set-up
3.1. Generating interfacial waves

We study interfacial waves in the periodic domains of width W and depth d shown
in figures 1 and 2. The interfacial waves have a wavelength L, wavenumber k = 2π/L,
amplitude a, and interface thickness δ, defined by

ρ(z = −d/2 − δ/2) − ρ(z = −d/2 + δ/2) = α�ρ, (3.1)

where z is measured positive upwards from the top of the domain, α = 0.99, and
the density difference between the two layers is �ρ/ρ0 = 0.03, where ρ0 = 1000 kg m−3

is the reference density. We refer to the steepness of the waves as ka and the
non-dimensional interface thickness of the waves as kδ. Prior to application of the
forcing function, the initial velocity field is quiescent and the initial density field is
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Figure 2. Three-dimensional domain, showing the initial interface taken from the
two-dimensional simluations. The wave propagates from left to right.

given by

ρ

ρ0

(z) = − �ρ

2ρ0

tanh

[
2(kz + kd/2)

kδ
tanh−1(α)

]
. (3.2)

The linearized wave frequency ω for small ka for interfacial waves with this non-
zero kδ density profile is computed using the modal analysis of the Appendix. The
associated non-zero interface thickness wave period is given by T = 2π/ω. In the limit
of an infinitessimally thin interface thickness (kδ → 0), the associated frequency and
period are given by ω2

0 = g′k/2 and T0 = 2π/ω0, where g′ = g�ρ/ρ0 is the reduced
gravity.

Following the method of forcing surface waves with a momentum source in the
form of a free-surface pressure (Baker, Meiron & Orszag 1982), we impose a two-
dimensional source term in the horizontal momentum equation that follows the
interfacial wave according to

F (x, z, t) =F0f (t)Rf (x, z, t) sin(kx − kxz(t)), (3.3)

where F0 is the magnitude of the forcing function and the interface midpoint, defined
by xz(t), moves in the positive direction at the wave speed c. This point is determined
numerically by computing the point in space at which the interface ζ (x, t), defined by
ρ(x, z = ζ, t) = 0, crosses the mid-depth line defined by z = −d/2. Because the waves
are forced until breaking occurs, we employ a quarter-cosine function in which the
magnitude of the forcing function tapers off just before breaking. This transient
function f (t) is given by

f (t) =




1, t < tf ,

1
2

[
1 + cos

(
1
2
ω(t − tf )

)]
, tf < t < tf +

2π

ω
,

0, t > tf +
2π

ω
,

(3.4)

where tf is the desired time at which the forcing function begins to decay. The
function Rf (x, z, t) is an approximation to the first mode horizontal velocity profile
of the interfacial wave field, and is given by

Rf (x, z, t) = −2ρ(x, z, t)

�ρ
exp(−k|z + d/2 − ζ (x, t)|), (3.5)

where ρ(x, z, t) is the two-dimensional density field as it evolves in time.
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Figure 3. Steepness ka as a function of non-dimensional time ω0t for waves with different
interface thickness kδ forced with the forcing function in equation (3.3). The solid lines are
from the numerical simulations and the dashed line is from equation (3.9). (a) kδ = π/10;
(b) 3π/10; (c) π/2; (d) 7π/10.

Applying the forcing function (3.3) to the Boussinesq equations, (2.1), generates a
nonlinear interfacial wave that grows with a density field that is closely approximated
by

ρ

ρ0

(x, z, t) = − �ρ

2ρ0

tanh

[
2(kz + kd/2 − kζ (x, t))

kδ
tanh−1(α)

]
, (3.6)

where the interface ζ is given by

kζ (x, t) = ka(t) cos(kx − kxz(t)), (3.7)

and ka(t) is the steepness as a function of time. Tsugi & Nagata (1973) show that
the fifth-order expansion of the interface in powers of ka deviates very little from
this approximation even for large ka. In its most simple form, the forced horizontal
momentum equation can be written as

∂umax

∂t
=F0, (3.8)

where umax is the maximum horizontal velocity within the interfacial wave, and is
given to first order in the steepness ka as umax = aω. Substitution into (3.8) yields the
steepness as a function of time as

ka(t) = 2

(
F0

g′

)(
ω0

ω

)
ω0t. (3.9)

This result is compared to results of actual forced interfacial waves in the next section.

3.2. Applying the forcing function to two- and three-dimensional simulations

To simulate interfacial waves, we apply the forcing function (3.3) to the interfacial
wave field in the domain shown in figure 1 on a 2562 finite-volume two-dimensional
grid and use F0/g

′ = 0.034 for all of the simulations (F0 = 0.01m2 s−1). Figure 3
depicts the steepness as a function of time for non-breaking waves of different
interface thickness kδ when forced with increasing release times tf . Increasing the
release time tf produces stable waves with increasing steepnesses that closely follow
the steepness relation given in equation (3.9). Although this relationship is only
accurate to first order in ka, it yields surprisingly good agreement for large ka. The
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steepness decays more for the thinner interface waves once the forcing is removed,
while the oscillations increase for the thicker interface waves after forcing removal.
This attests to the degredation of the effectiveness of the forcing function as the
interface thickness becomes very large. However, these post-release effects are not
relevant for the present simulations because breaking occurs during forcing and
before transient effects can alter the wave dynamics.

Continuous application of the forcing function eventually leads to breaking at a
breaking time tb and critical steepness kac, as determined in § 4.1. Using this knowledge
of tb, two-dimensional breaking dynamics are analysed by forcing interfacial waves
with the release time in equation (3.4) given by tf = tb − T/2. This guarantees that the
forcing function does not continue to add energy to the flow and alter the dynamics
once breaking begins.

For the three-dimensional simulations, the 2562 two-dimensional results at t = tb −
T/2 are interpolated onto the 1283 three-dimensional domain shown in figure 2 and
the forcing is ramped down over one wave period as specified in equation (3.4).
This saves on unnecessary three-dimensional computation time since the two- and
three-dimensional pre-breaking simulations are identical. The initial conditions for
the three-dimensional computations are perturbed with

u+
1 (x, y, z) = (1 + αR)u−

1 (x, z),

u+
3 (x, y, z) = (1 + αR)u−

3 (x, z),

where R ∈ {−1, 1} is a uniformly distributed random number, α = 10−2 is the scale
factor, and the − and + superscripts are used to indicate the solutions just before and
just after perturbation, respectively. In two dimensions, no white noise is imposed
on the solution since the two-dimensional instabilities develop in the absence of
perturbations. In three dimensions, the transverse velocity field u+

2 is determined from
continuity after the horizontal and vertical components are perturbed. The density
field is not perturbed.

For all of the simulations, the kinematic viscosity is set to ν =10−6 m2 s−1, so that
the wave Reynolds number is given by Rew = ω0/νk2 = 2 179. In an effort to maintain
the integrity of the interface up until breaking occurs, the scalar diffusivity κ is set to
zero during wave growth while employing the background potential energy preserving
scheme of (Fringer 2003). When the wave breaks at t = tb according to the criterion
specified in § 4.1, we set κ so that the Prandtl number is Pr = ν/κ = 7 and revert to
the SHARP formulation of (Leonard 1987). Boundary conditions are periodic in the
horizontal and free-slip on the upper and lower boundaries.

4. Initial instability
4.1. Breaking criterion

The total potential and kinetic energy within a volume V are defined as

Ep =
g

ρ0

∫
V

ρz dV, (4.1)

Ek =
1

2

∫
V

uiui dV. (4.2)

While the maximum potential and kinetic energy for surface waves peaks before
the critical breaking amplitude (Cokelet 1977), the kinetic and potential energy are
monotonic before breaking for interfacial waves (Holyer 1979). When interfacial
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Figure 4. − · −, potential and – – –, kinetic energy and —, half the total energy of a breaking
interfacial wave with interface thickness kδ = π/10, showing the breaking point tb defined in
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Figure 5. Contours of ρ = 0 for a two-dimensional breaking interfacial wave with interface
thickness kδ = π/10. The wave propagates from left to right, and each contour corresponds to
a point in time depicted in figure 4.

waves break, the potential energy decreases as the wave overturns and fluid particles
accelerate, causing an increase in the kinetic energy. Figure 4 depicts the kinetic and
potential energy of a two-dimensional interfacial wave as it grows to its breaking
amplitude while figure 5 depicts the corresponding contours of ρ = 0 at the particular
points in time depicted in figure 4. From figure 5, the wave begins to break somewhere
between points 7 and 9. This corresponds to the point in time in figure 4 in which
the kinetic and potential energy begin to diverge sharply from one another because
of breaking. Soon after the divergence, the kinetic energy grows while the potential
energy decreases. This is indicative of a developing instability, and the point which is
defined to be the incipient breaking time t = tb. Therefore, breaking is defined as the
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point at which the potential energy begins to drop, or the point at which

dEp

dt

∣∣∣∣
t=tb

= 0. (4.3)

This occurs between points 7 and 8 at t/T = 8.2 in figure 4. The total energy continues
to increase after t = tb because the forcing continues to add energy to the system.

In order to determine the breaking time tb, two-dimensional simulations are
performed with f (t) = 1 (corresponding to tf = ∞) in equation (3.4). With tb known,
the breaking dynamics in the absence of forcing are then computed by applying the
forcing function with tf = tb −T/2. At t = tf , the magnitude of the forcing is gradually
removed over one wave period T with the quarter-cosine function (3.4). Figures 6
and 7 depict the results of an interfacial wave in which the forcing is ramped down
at t = tb − T/2. Owing to the ramping down of the forcing magnitude, the unforced
breaking simulations break slightly later in time than the forced simulations (tb =8.2T

forced vs. tb = 8.4T for the unforced). This is to be expected, since the instability grows
faster for the forced simulation than for the unforced simulation. Nevertheless, the
critical amplitude is not significantly affected.

4.2. Critical breaking steepness

We define the state of a stable interfacial wave in terms of the minimum Richardson
number within the wave and the maximum Froude number within the wave. In terms
of the wave steepness ka and interface thickness kδ, the minimum Richardson number
and maximum Froude number can be approximated with

Rimin =
N 2

(∂u/∂z)2
≈ 1

8

kδ

(ka)2
, (4.4)

Frmax =
umax

c
≈ ka, (4.5)
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where we have approximated the maximum velocity to first order in ka as umax = aω0

and the shear and buoyancy frequency as

N2 = − g

ρ0

∂ρ

∂z
≈ 2

kδ
ω2

0, (4.6)

∂u

∂z
≈ u(ζ + δ/4) − u(ζ − δ/4)

δ/2
=

4umax

δ
=4

ka

kδ
ω0. (4.7)

This assumes that the maximum velocity occurs roughly at z = ζ ± δ/4, where z = ζ

is the mean interface line where ρ = 0. We define a maximum inverse Richardson
number as

Rmax =
1

4Rimin

, (4.8)

so that we have

Rmax =
2αRi(ka)2

kδ
, (4.9)

where αRi is a function of kδ and is computed in order to account for highly nonlinear
effects when ka and kδ become large. The state of an interfacial wave then follows
the trajectory in the (Rmax, Frmax)-plane that is defined by

Rmax =
2αRiFr2

max

kδ
. (4.10)

We compute the value of αRi for each kδ by generating stable interfacial waves
with increasing steepness and computing αRi that satisfies a least-squares fit to the
computed (Rmax, Frmax)-trajectory of that interfacial wave, where the Richardson
number and Froude number are computed directly from the simulation results. The
Richardson number is computed readily from the simulation results since the vertical
density and velocity gradients can be computed numerically. However, in order to
compute the Froude number, an estimation of the phase speed of the wave is required.
The phase speed is determined by computing a phase speed c that minimizes the
time rate of change of the density field in a reference frame moving with the wave.
In a frame moving with the wave, the streamlines are parallel to the lines of constant
density, and in the absence of scalar diffusivity, there is no change in the density field.
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Figure 8. Velocity and density fields of a right-propagating interfacial wave in (a) a stationary
reference frame, and (b) a frame that moves with the wave to the right at speed c. The interface
thickness is kδ = 2π/5, the steepness is ka =0.61, and the wave speed is c/c0 = 0.95.

A global measure of the time rate of change of the density field in a frame moving at
the wave speed c is given by the 2-norm

E2
2(c) =

∫
V

(
∂ρ

∂t

)2

dV =

∫
V

[
(u − c)

∂ρ

∂x
+ w

∂ρ

∂z

]2

dV, (4.11)

where V represents the volume of the computational domain. Differentiating with
respect to c results in the phase speed that minimizes E2(c),

c =

∫
V

(uρx + wρz) ρx dV∫
V

ρ2
x dV

. (4.12)

This minimization problem effectively computes a phase speed c that minimizes the
velocity components normal to the lines of constant density, and hence aligns the
streamlines with the constant density lines. Figures 8(a) and 8(b) depict the velocity
field of an interfacial wave in a stationary frame and one moving at the wave speed c.

Figure 9 depicts trajectories of stable waves with increasing kδ. Each point in the
trajectories in figure 9 corresponds to the location of a steady-state interfacial wave
after the forcing is removed. Because viscosity and transient effects cause the steady-
state location of the interfacial waves to deviate slightly from their initial locations,
the points in figure 9 correspond to average locations in the (Rmax, Frmax)-plane. These
results show that the nonlinear correction factor is given by

αRi = 1.3(kδ)1/2, (4.13)

which indicates that a better approximation for the trajectories in the (Rmax, Frmax)-
plane, at least for the kδ in the range covered in this paper, is given by

Rmax =
2.6Fr2

max

(kδ)1/2
. (4.14)
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Figure 9. Trajectories of stable interfacial waves with increasing kδ in the (Rmax,Frmax)-plane.
The points indicate the mean locations of the stable waves in the plane after release of forcing,
and the solid lines depict the best fit of equation (4.10) by adjusting αRi .
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Figure 10. Critical breaking steepness as a function of the interface thickness kδ. The data
points (�) depict the critical steepness for each kδ computed with the criterion in § 4.1, while
the solid line depicts the theoretical critical steepness lines obtained from a least-squares fit to
the data. The vertical lines separate the three regimes (A, B, C) discussed in the text.

This approximation does not result from an asymptotic expansion in powers of ka

and kδ, but rather, holds for the ka and kδ covered in this paper, that is, 0 � ka � 1
and π/10 � kδ � π. Asymptotic expansions in powers of kδ such as those performed
by Phillips (1977) and Jou & Weissman (1987) are not valid for such large values.

We can use the equation for the trajectories in the (Rmax, Frmax)-plane to determine
the instability that governs the critical steepness ka of an interfacial wave with
interface thickness kδ. From linear stability theory (Drazin 1977), a shear instability
results when Rmax > 1, but this condition is not valid for the highly nonlinear and
unsteady waves studied here. However, we can conclude that waves that break along
lines of constant Rmax break because of a shear instability, albeit a highly modified
shear instability, while waves that break at a constant Frmax break bacause of a
convective instability. We will refer mostly to the state of waves in terms of kδ and
ka, but this translates directly to a point in the (Rmax, Frmax)-plane.

Figure 10 depicts the critical breaking steepness kac as a function of the interface
thickness kδ. The data points (�) represent critical breaking steepnesses computed
with the criterion developed in § 4.1 for ten different interfacial waves with interface
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Figure 11. Evolution of a two-dimensional breaking interfacial wave with non-dimensional
interface thickness kδ = π/10 that breaks in regime A in figure 10. The wave propagates from
left to right.

thickness in the range π/10 � kδ < π forced until breaking. The scatter results from
the transient oscillations in the steepness that cause Ep to be slighly out of phase
with ka, and hence leads to slight discrepancies in the point at which dEp/dt =0. The
solid line depicts the theoretical critical steepness limit derived from a least-squares
fit to the data. The results show that the particular instability that limits the steepness
of a breaking interfacial wave can be divided into the three regimes shown, namely
A: kδ < 0.56, B: 0.56 � kδ < 2.33 and C: kδ � 2.33.

Figure 11 depicts growth to instability of an interfacial wave in regime A. The
dynamics of waves in this regime is covered by (Troy 2003), who provides the
following argument. The critical steepness is limited by a Kelvin–Helmholtz shear
instability at the interface. Clockwise Kelvin–Helmholtz billows form in the trough
where the vertical shear is positive, while counterclockwise Kelvin–Helmholtz billows
form at the crest where the vertical shear is negative. For waves in regime A, the
wavelength of the most rapidly growing disturbance arising from the shear instability
is less than 1/4 of the wavelength of the interfacial wave. If the wavelength of the most
rapidly growing disturbance of a shear instability is given by λKH = 2.8δ (Hazel 1972),
and these disturbances grow uninhibited within interfacial waves with wavelengths of
at least 4λKH , then this corresponds to interfacial waves with kδ < 0.56. Effectively,
the shear instability ‘fits’ into the interfacial waves in regime A.

When the interface thickness increases beyond kδ = 0.56, the dominant instability
is also a shear instability, since the critical steepness of these waves closely follows the
line for which kac =0.85kδ1/4. This corresponds to a line of constant Rmax =1.85 in the



Breaking interfacial waves 333

t /T = 1.7
1

0

–1

kz

1

0

–1

kz

1

0

–1

kz
4.2

9.16.6

14.011.5

Figure 12. Evolution of a two-dimensional breaking interfacial wave with non-dimensional
interface thickness kδ = π/2 that breaks in regime B in figure 10. The wave propagates from
left to right.

(Rmax, Frmax)-plane, or a line of constant minimum Richardson number of Rimin = 0.13.
Interfacial waves therefore do not necessarily break at the critical Richardson number
for linear stability of Rimin = 0.25. In this regime, the size of the Kelvin–Helmholtz
billows is of the same order of magnitude as the amplitude of the interfacial wave, as
shown in figure 12. As a result, the wave appears to overturn owing to a convective
instability when a statically unstable situation occurs at t/T = 14.0. At this point,
the phase speed of the wave has decreased and indeed the maximum Froude number
of the wave, Frmax = umax/c, does exceed unity. However, the initial instability is still
brought about by a shear instability that effectively increases the maximum velocity
and reduces the wave speed so that the Froude number becomes supercritical. This
property is what defines the waves in regime B: the capability of the Kelvin–Helmholtz
billows to induce a two-dimensional convective instability. The size of the Kelvin–
Helmholtz billows in the interfacial waves in regime A are not large enough to induce
such a situation, and hence Frmax does not exceed unity for these waves.

The interface thickness of the waves in regime C is so large that the Kelvin–
Helmholtz billows cannot form and hence the instability is purely convective. These
waves are limited to a maximum steepness of roughly kac = 1.05, as shown in figure 10,
which shows that the approximation Frmax = ka holds very well even for such highly
nonlinear waves. This is consistent with the findings of (Holyer 1979), who shows
that Boussinesq irrotational waves are limited to a steepness of kac = 1.1, indicating
that interfacial waves with thick interfaces behave as irrotational waves because the
shear at the interface is negligible. Instead, nonlinear forces within the wave cause
the maximum fluid velocity within the wave to exceed the wave speed before a
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Figure 13. Evolution of a two-dimensional breaking interfacial wave with non-dimensional
interface thickness kδ = π that breaks in regime C in figure 10. The wave propagates from left
to right.

Kelvin–Helmholtz instability can develop, as shown in figure 13. The lack of shear-
induced billows leads to less spectacular two-dimensional breaking for the waves in
regime C. Statically unstable regions of fluid move out ahead of the wave crest where
the local Froude number becomes supercritical, leading to more localized regions of
instability. This was shown to be the case for the waves in the experiments of Thorpe
(1978).

To summarize, the initial instability of breaking interfacial waves is due to shear
when the interface thickness is less than kδ = 2.33. When kδ < 0.56, the length scale
of the Kelvin–Helmholtz billows is smaller than one quarter of the wavelength of
the interfacial wave, and hence they grow less impeded by the wave and do not
induce a convective instability (Troy 2003). Larger interface thickness waves develop
more energetic Kelvin–Helmholtz billows that lead to a convective instability because
the billows reduce the phase speed of the wave so that Frmax > 1. When the interface
thickness is too large, Kelvin–Helmholtz billows do not form and the instability is
purely convective and much weaker. The relative size of the billows plays an important
role in the mixing and dissipation that results in the three-dimensional dynamics that
ensue after the initial two-dimensional instabilities. This is discussed in § 5.

5. Three-dimensional dynamics and mixing
5.1. Description of breaking dynamics

Figures 14, 15 and 16 depict the isosurface of ρ =0 for breaking interfacial waves in
the three regimes depicted in figure 10. All three figures show how three-dimensionality
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Figure 14. Isosurfaces of ρ =0 for a breaking interfacial wave with kδ = π/10, corresponding
to regime A in figure 10, at 6 points in time after release of forcing. The wave propagates from
left to right.
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Figure 15. Isosurfaces of ρ = 0 for a breaking interfacial wave with kδ = π/2, corresponding
to regime B in figure 10, at 6 points in time after release of forcing. The wave propagates from
left to right.

is not evident until after the cross-stream rolls develop as a result of an initial two-
dimensional instability. The waves in figures 14 and 15, corresponding to regimes
A and B in figure 10, generate regions which are susceptible to a cross-stream
convective instability only after development of the initial two-dimensional shear
instability. Likewise, the wave in figure 16, corresponding to regime C in figure 10,
develops three-dimensionality after the initial two-dimensional convective instability.
Because the time scale associated with the shear instability is shortest for the wave
with the thinnest interface, the wave in figure 14 develops the Kelvin–Helmholtz
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Figure 16. Isosurfaces of ρ = 0 for a breaking interfacial wave with kδ = π, corresponding to
regime C in figure 10, at 6 points in time after release of forcing. The wave propagates from
left to right.

billows sooner than those in figure 15. The three-dimensional instabilities develop the
latest for the wave in regime C, indicating that the weakest instability is the initial
convective two-dimensional instability for large kδ. Clearly, the wave that loses the
most energy of the three is that in regime B. By the sixth frame, very little of the
initial wave profile is left over, while a clear wave signature is left over for the waves
in regimes A and C. This is discussed in more detail in § 5.2.

Unlike critical layers, the breaking mechanism for interfacial waves is unambiguous.
First, depending on the regime, either Kelvin–Helmholtz billows or Rayleigh–Taylor
billows develop at the crest and troughs of the waves. Then, energy is transferred to
the cross-stream dimension through convective instabilities that develop as a result
of the initial two-dimensional billows. These cross-stream convective instabilities
develop in regions where the fluid is in a statically unstable situation for enough
time for the convectively driven three-dimensional flow to manifest itself. Therefore,
because this statically unstable situation can only arise from the development of
the two-dimensional billows, the three-dimensional convective instability is limited to
occurring after the initial two-dimensional billows form. Just as Winters & D’Asaro
(1994) found for critical layers, the cross-stream instability for interfacial waves is
dominated by a convective instability which generates longitudinal rolls that account
for most of the wave breaking and energy loss. These longitudinal rolls are reported
by Dörnbrack (1998) to account for a significant portion of the energy loss and
mixing in critical layers as well.

Figures 17, 18 and 19 depict isosurfaces of ρ = 0 and longitudinal vorticity
(ω1 = u3,2 − u2,3) for interfacial waves in regimes A, B and C in figure 10, respectively.
The vorticity isosurfaces represent the longitudinal vorticity with frequency ω1 =ω/2,
and are shown at a point in time when the cross-stream kinetic energy is maximized for
each case. This longitudinal vorticity grows initially as a result of a statically unstable
situation that results from the initial two-dimensional instability. In figures 20(a) and
20(b), the contours of longitudinal vorticity exist only in the statically unstable regions



Breaking interfacial waves 337

Figure 17. Isosurfaces of ρ = 0 (red) and longitudinal vorticity ω1 for a breaking interfacial
wave with interface thickness kδ = π/10, corresponding to regime A in figure 10, when the
cross-stream kinetic energy is maximized at t/T =2.33 after release of forcing. Blue and green
isosurfaces represent positive and negative longitudinal vorticity of magnitude ω1/ω = 1/2. The
wave propagates from left to right.

formed by the two-dimensional Kelvin–Helmholtz billows, while in figure 20(c),
longitudinal vorticity exists in statically unstable regions formed by the two-
dimensional Rayleigh–Taylor instability. The longitudinal vorticity that forms for
all three cases is further enhanced by the stretching of vortex filaments by the two-
dimensional billows. The relative strength of the longitudinal vorticity, and therefore
the length scale of the longitudinal rolls, is set by the local thickness of the statically
unstable region that develops from the two-dimensional instability. Because the time
scale of the formation of the convective billows is inversely proportional to the local
thickness of the statically unstable region, longitudinal vorticity grows only when
the local thickness becomes small enough such that the time scale of the instability
drops below the overturning time scale of the overlying two-dimensional instability
that feeds energy into the longitudinal rolls. Therefore, because the time scale of the
overlying two-dimensional instability grows with increasing kδ, so does the length
scale of the longitudinal rolls, albeit substantially smaller than kδ. As discussed in the
next section, it is the length scale of the overlying two-dimensional instability that
governs the mixing and dissipation of the breaking process.

5.2. Irreversible energy changes and the mixing efficiency

According to Winters et al. (1995), the potential energy can be split into its available
and background components so that

Ep = Eb + Ea. (5.1)
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Figure 18. Isosurfaces of ρ = 0 (red) and longitudinal vorticity ω1 for a breaking interfacial
wave with interface thickness kδ = π/2, corresponding to regime B in figure 10, when the
cross-stream kinetic energy is maximized at t/T = 2.93 after release of forcing. Blue and green
isosurfaces represent positive and negative longitudinal vorticity of magnitude ω1/ω = 1/2. The
wave propagates from left to right.

The background potential energy, Eb, represents the potential energy of the system
if it were allowed to come to rest adiabatically. That is, if at some instant in time
the scalar diffusivity vanished, then eventually the flow would come to rest in some
statically stable state in which the potential energy was equal to the background
potential energy. A general definition of the background potential energy is given by
(Winters et al. 1995),

Eb =
g

ρ0

∫
V

ρ(z∗)z∗ dV, (5.2)

and it evolves according to

dEb

dt
= φd =

gκ

ρ0

∫
V

z∗∇2ρ(z∗) dV, (5.3)

where ρ(z∗) is the density distribution in its background state. Computation of the
background potential energy is expensive (Fringer 2003) because it requires a sorting
of the density field in ascending order. We employ the Quicksort algorithm (Roberts
1998), which requires O(N log N ) operations to sort an array of length N . Since the
three-dimensional computations we perform have N =1283 finite volumes, a slower
algorithm would be unaccepatable. After a direct computation of the background
potential energy is made, the available potential energy can be obtained with Ea = Ep−
Eb. The potential energy is in turn related to the total energy ET and kinetic energy
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Figure 19. Isosurfaces of ρ = 0 (red) and longitudinal vorticity ω1 for a breaking interfacial
wave with interface thickness kδ = π, corresponding to regime C in figure 10, when the
cross-stream kinetic energy is maximized at t/T =3.66 after release of forcing. Blue and green
isosurfaces represent positive and negative longitudinal vorticity of magnitude ω1/ω = 1/2. The
wave propagates from left to right.

Ek via

dEk

dt
+

dEp

dt
= −ε, (5.4)

where the volume integrated dissipation is given by

ε = ν

∫
V

∂ui

∂xj

∂ui

∂xj

dV. (5.5)

Figures 21(a) and (b) depict the energy budgets of breaking interfacial waves with
kδ = π/10 (a) and kδ = π/2 (b) as departures from their values just before breaking
at t = tb and normalized by the maximum available potential energy, Ea,max , which
is the available potential energy at t = tb. Upon breaking for both cases, there is an
immediate rise in the kinetic energy at the expense of the available potential energy.
The rise in the kinetic energy results from the creation of the longitudinal rolls
that result from the cross-stream convective instability. Soon after, the kinetic energy
drops along with the available potential energy until the available potential energy
asymptotes to a lower level, at which a lower-amplitude wave exists with a thicker
interface, as shown in figures 22 and 23. These figures depict the wave-averaged
density profiles of the waves just before and 10 periods after breaking, where the
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Figure 20. Surface plots of the wave-averaged density field and the associated contours of
positive (blue) and negative (green) longitudinal vorticity of magnitude ω1/ω = 1/2 in plane
A − A′ when the cross-stream kinetic energy is maximized. The interface thickness and time
are given by (a) kδ = π/10, t/T = 2.33; (b) kδ = π/2, t/T = 2.93; (c) kδ = π, t/T = 3.66. The
wave propagates from left to right.
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Figure 21. Energy budgets of breaking interfacial waves with interface thickness (a) kδ = π/10
and (b) kδ = π/2, normalized by the maximum available potential energy. The time is relative
to tb , the point at which breaking occurs. Legend: —, ET ; – – –, Ea; —·—, Ek; · · ·, Eb .



Breaking interfacial waves 341

(a)                                                                                            (b)

Figure 22. Surface plots of the wave-averaged density field from equation (5.6) of an
interfacial wave with an initial interface thickness of kδ = π/10 (a) before and (b) 10 periods
after breaking.

(a)                                                                                            (   b)

Figure 23. Surface plots of the wave-averaged density field from equation (5.6) of an
interfacial wave with an initial interface thickness of kδ = π/2 (a) before and (b) 10 periods
after breaking.

wave-averaged density field ρ is given by

ρ(x, z, t) =
1

W

∫ W

0

ρ(x, y, z, t) dy, (5.6)

and W is the width of the domain. The wave-averaged density fields show how the
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Figure 24. Change in the available and background potential energy and the bulk mixing
efficiency, ηB =�Eb/(�Eb−�Ea), during wave breaking as a function of the interface thickness
at the onset of breaking.

effect of the breaking process is to lose a significant portion of the wave amplitude
and to increase the interface thickness. The increased interface thickness for both
cases results in the increase in the background potential energy in figures 21(a)
and 21(b). Because interfacial diffusion accelerates immediately upon wave breaking
owing to the ensuing turbulence, the background potential energy rises monotonically
until it asymptotes to the background potential energy of a wave with a thicker
interface.

Figure 24 depicts the change in available and background potential energy resulting
from wave breaking as a function of the mean interface thickness at the onset of
breaking (in general, this is slightly different from the initial interface thickness of
the interface at the onset of forcing). The figure also depicts the ratio of the total
gain in the background potential energy to the sum of the loss of available potential
energy and the gain in the potential energy. This is a measure of how efficiently the
background potential energy rises at the expense of the available potential energy of
the wave. Michallet & Ivey (1999) define the mixing efficiency in a similar manner
for their experiments of breaking interfacial waves on a sloping boundary. Following
their work, we define the bulk mixing efficiency as

ηB =
�Eb

�Eb − �Ea

, (5.7)

where �Ea and �Eb are the total change in the available and background potential
energy resulting from wave breaking. Both arise from irreversible changes in energy.
The available potential energy is lost to the kinetic energy of the flow, which in turn
loses its energy to dissipation. The background potential energy rises irreversibly with
interfacial diffusion which is accelerated by the breaking process. Clearly, there is
a maximum loss of available potential energy and a maximum gain in background
potential energy roughly at kδ = 1, which corresponds to a wave in regime B in
figure 10. This is the point at which energy is transferred most efficiently into the
longitudinal rolls that account for most of the mixing and dissipation in the wave. The
length scale of the longitudinal rolls as well as the cross-stream Kelvin–Helmholtz
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Figure 25. Contours of ρ = 0 for waves with three different interface thicknesses during
breaking. Dissipation and mixing are maximized when kδ ∼ ka. The waves propagate from
left to right.

billows is set by the interface thickness. How much available potential energy is lost by
the wave is set by the ratio of the interface thickness to the steepness. If the interface
is very thin, then the Kelvin–Helmholtz billows are not energetic enough to influence
the overall character of the wave, and hence mixing and dissipation are limited by
eddies that are of the order of kδ, as shown in figure 25(a). However, if the interface
thickness is of the order of the amplitude such that kδ ∼ ka, then the size of
the eddies induced by the Kelvin–Helmholtz instability is roughly equal to the
amplitude of the wave. This results in wave overturning in its most catastrophic
sense, and hence results in a maximum energy transfer to the longitudinal rolls which
results in the most dissipation and scalar mixing, as shown in figure 25(b). Too
thick an interface results in two-dimensional convective billows which are too weak
to significantly affect the overall character of the wave, as shown in figure 25(c).
In addition to the size of the billows for the thicker interface, the strength of the
Kelvin–Helmholtz instability weakens as well with increased interface thickness, up
until the point at which the Kelvin–Helmholtz billows vanish and the initial instability
is dominated by weak two-dimensional convective instabilities, as was shown in § 4.2.
This weak character of the initial two-dimensional instability in turn weakens the
associated mixing and dissipation during wave breaking. However, because a decrease
in the available potential energy is counteracted by an increase in the background
potential energy, the bulk mixing efficiency is a weak function of the interface
thickness, and the average value is ηB = 0.42 ± 0.07.

To obtain a better understanding of the mixing and dissipation of the breaking
process, it is useful to analyse the instantaneous rate of change of the background
potential energy φd from equation (5.3) as well as the dissipation ε from equation (5.5).
Figure 26 depicts the non-dimensional rates φ∗

d = φd/(ω0Ea,max) and ε∗ = ε/(ω0Ea,max)
for four different interface thicknesses. The irreversible energy exchanges reach peak
values soon after breaking. As previously discussed, the largest peaks in the dissipation
and mixing occur for kδ in the intermediate ranges. Multiple peaks in the dissipation
and mixing curves for the thinner interfaces occur as a result of secondary and possible
tertiary breaking owing to pairing of Kelvin–Helmholtz induced cross-stream vortices.
Each pairing event transfers wave energy into longitudinal convective rolls which
further enhance dissipation and mixing. For large interface thicknesses, the initial
two-dimensional convective rolls do not induce vortex pairing, but rather, transfer
energy into alternate wave components which interact in a nonlinear manner and
generate much weaker convective patches. While thicker waves do not dissipate as
much wave energy during the initial breaking event, the remaining wave energy acts
to enhance further intermittent and localized smaller-scale breaking events through
the nonlinear interaction of these multiple wavenumbers. These events occur over
periods that extend beyond the time period shown in figure 26.
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Figure 27. Instantaneous mixing efficiency η for four different interface thicknesses.
—, kδ = π/10; – – –, kδ = 3π/10; −·−, kδ = π/2; · · ·. kδ = π.

The instantaneous relative rate of irreversible energy exchange is given by the
instantaneous mixing efficiency (Winters et al. 1995)

η =
φd

φd + ε
. (5.8)

Figure 27 depicts the instantanous mixing efficiency for four different interface
thicknesses up until t/T0 = 4. The mixing efficiency after this point is not useful
because as the dissipation vanishes, the mixing efficiency approaches unity and
becomes irrelevant. From figure 27, we see that there is no apparent dependence
of the maximum instantaneous mixing efficiency on the interface thickness. If the
maximum dissipation increases, we would expect the mixing efficiency to decrease.
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Figure 28. Maximum instantaneous mixing efficiency as a function of the number of cells
in the horizontal, N , for a breaking interfacial wave with interface thickness kδ = π/10. Each
simulation is computed with N3 total cells.

However, an increased dissipation is counteracted by an increased rate of change of
the background potential energy, and hence, just like the bulk mixing efficiency, the
instantaneous mixing efficiency is not affected by the interface thickness. The average
maximum mixing efficiency for all the thicknesses is η = 0.36 ± 0.02, bringing it to
within the error bounds prescribed by the bulk mixing efficiency, ηB = 0.42 ± 0.07.
While the two values need not be equal, their statistical agreement shows that the bulk
mixing efficiency is dominated by the peaks in the instantaneous mixing efficiency.

5.3. Validation of the mixing efficiency

We demonstrate that the result for the mixing efficiency is grid-independent by
performing simulations of the breaking interfacial wave with kδ = π/10 with varying
grid resolution. With a total number of grid cells given by N 3, we plot the maximum
instantaneous mixing efficiency as a function of the number of cells in the horizontal,
N , in figure 28. This depicts the worst case scenario for convergence of the mixing
efficiency, since it represents the thinnest interface case. Clearly, the mixing efficiency
is converging to a value that is less than η =0.38. The maximum mixing efficiency with
N = 128 is given by η = 0.378, which is within 2% of the mixing efficiency for the most
resolved case with N =160. This indicates that the other calculations are at least as
close to a converged value as this one, since convergence must improve with increased
interface thickness. Therefore, the average mixing efficiency of η =0.36 ± 0.02 must
be at least within 2% of the converged value, and represents a lower bound for the
estimate of the mixing efficiency.

Table 1 depicts the mixing efficiency of several scenarios computed by other authors.
The value we obtain for the mixing efficiency is consistent with the larger values
obtained for convectively driven mixing induced by internal wave breaking. Breaking-
wave experiments or simulations with lower values result from a predominant shear
instability that governs the breaking, such as the interfacial wave breaking on slopes
of Michallet & Ivey (1999) or the shear-induced breaking in critical layers of Lin
et al. (1993). While there appears to be a correlation between the predominant
instability and the mixing efficiency for breaking internal waves, it is important to
note that this correlation only applies to the bulk mixing efficiency or the peak mixing
efficiency computed during the turbulent phase of a breaking event. This is because
the peak mixing efficiency can be extremely high during the preturbulent phase of a
developing instability. For example, in their direct numerical simulations comparing
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Mechanism Reference Mixing efficiency

Rayleigh–Taylor instability Linden & Redondo (1991) 0.5
Breaking periodic interfacial waves Present 0.36 ± 0.02
Critical topography Slinn & Riley (1998a) 0.32 − 0.38
Standing waves McEwan (1983a) 0.26 ± 0.06
Breaking interfacial waves on slopes Michallet & Ivey (1999) 0.25
First principles McEwan (1983b) 0.25
Critical layer Dörnbrack (1998) 0.20
Critical layer Lin et al. (1993) 0.13
Grid turbulence Rehmann (1995) 0.05

Table 1. Mixing efficiencies computed by various authors.

Kelvin–Helmholtz to Holmboe instabilities, Smyth & Winters (2003) compute peak
flux coefficients Γi of roughly 0.7 for the Kelvin–Helmholtz instability and in excess
of unity for the Holmboe instability, which translate to mixing efficiencies of roughly
η = 0.41 and η = 0.5, respectively, when using the approximation η ≈ Γi/(1 + Γi).
These large values result from the extremely efficient nature of the flows in their
preturbulent phases which result from a strong coherence of the laminar strain
fields. As soon as the flows become turbulent, the instantaneous flux coefficients
for both cases drop to their canonical values of 0.2. Therefore, we stress that the
correlation between the mixing efficiency and the source of the instability can be
made only during the turbulent or fully developed phases of a mixing event. That
is, convectively driven turbulent mixing appears to be correlated with higher mixing
efficiencies than shear-driven turbulent mixing, at least for breaking internal waves.

5.4. Three-dimensionality

In this section, we determine the importance of three-dimensional effects on the
breaking dynamics. This is useful in determining whether or not two-dimensional
simulations are suitable, and if not, how wide the domain must be made in the cross-
stream dimension in order to perform accurate simulations while minimizing the
computational expense. The three-dimensional nature of the flow can be quantified
by computing the kinetic energy associated with each component of velocity in the
three-dimensional simulations and comparing it to the two-dimensional simulations.
The components of the kinetic energy are given by

E1 =
1

2

∫
V

u2
1 dV,

E2 =
1

2

∫
V

u2
2 dV,

E3 =
1

2

∫
V

u2
3 dV,

so that the total kinetic energy is given by Ek =E1 + E2 + E3. The normalized
departure from two-dimensionality of each component is given by

�E1 =
E1,3 − E1,2

Ek,3

,

�E2 =
E2,3

Ek,3

,
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Figure 29. Normalized energy components quantifying the departure from two-dimensionality
for a breaking interfacial wave with interface thickness kδ = 3π/5. —, �E1; – – –, �E2; −·−,
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�E3 =
E3,3 − E3,2

Ek,3

,

�Ek =
Ek,3 − Ek,2

Ek,3

,

where Em,n represents the mth component of energy in the nth dimensional
computation. For example, E1,3 represents the component of energy in the 1 direction
for the 3 dimensional computation. Ek,n represents the total kinetic energy of
the nth dimensional computation. Therefore, the normalized departure from two-
dimensionality represents a fraction of the total kinetic energy of the three-dimensional
flow.

The departure from two-dimensionality for the interfacial wave with kδ = 3π/5 is
shown in figure 29. The figure shows that, while less than 5% of the three-dimensional
energy is contained in the u2-direction, the total kinetic energy of the three-dimensional
flow is more than 25% less than that computed by the two-dimensional flow at
t/T = 4. This is due to the lack of dissipation in the two-dimensional computation
resulting from a lack of the three-dimensional longitudinal rolls. These rolls account
for a significant portion of the dissipation in the three-dimensional computations.
Figure 30 compares the two- and three-dimensional dissipation from (5.5) and rate
of increase of the background potential energy from equation (5.3). In subplot (a),
the rate of increase of the background potential energy is shown for both the two-
and three-dimensional cases. Each is normalized by the maximum rate of increase
for the three-dimensional case, φd3,max . The same is done for subplot (b), where the
dissipation for the two- and three-dimensional cases are normalized by the maximum
dissipation for the three-dimensional case, ε3,max . While the peak rates of increase of
the background potential energy do not differ substantially, the peak dissipation is
roughly half as large for the two-dimensional case as it is for the three-dimensional
case.
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Figure 30. Rate of increase of (a) the background potential energy and (b) dissipation
normalized by their maxima for the three-dimensional case for a breaking interfacial wave
with interface thickness kδ = 3π/5. —, three-dimensional computation; – – –, two-dimensional
computation.

The rate of increase of the background potential energy is quite large for the
two-dimensional case because of the reverse energy cascade of the two-dimensional
turbulence. As a result of this energy cascade and the lack of three-dimensional
longitudinal rolls, dissipation for the two-dimensional flow is substantially reduced,
and the scales of motion become larger with time owing to two-dimensional vortex
pairing. Owing to the relatively large Prandtl number of 7, the large vortices stretch
out filaments of density and create grid-scale density variations in the flow field that
cannot be resolved accurately by the SHARP scheme. As a result, the two-dimensional
scalar advection scheme becomes highly diffusive. The three-dimensional flow does
not suffer from this because the energy cascade is to smaller scales which are smeared
by molecular viscosity. Large vortices do not form and thus grid-scale variations in
density are minimized. Therefore, the density gradients in the three-dimensional case
are still resolved accurately by the SHARP scheme and scalar diffusion resulting from
numerical errors is minimal.

6. Conclusions
Finite-amplitude interfacial waves break as a result of an initial two-dimensional

instability that leads to a three-dimensional convective instability. The initial two-
dimensional instability can be divided into three regimes. The first regime concerns
waves with kδ < 0.56 and is covered by Troy (2003). In this regime, the most unstable
wavelength associated with a shear instability is small enough to grow at the interface
and develop Kelvin–Helmholtz billows, but it is not energetic enough to induce
a two-dimensional convective instability within the wave. In the second regime,
further increasing the interface thickness produces waves with energetic Kelvin–
Helmholtz billows that induce a convective instability. The critical Richardson number
during breaking in this regime is given by Rimin = 0.13, indicating that interfacial
waves can propagate stably with Richardson numbers less than the critical value of
Rimin = 0.25. In the last regime, waves having a non-dimensional interface thickness
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that is greater than kδ = 2.33 are limited in amplitude by a weak two-dimensional
convective instability that results when Frmax > 1.

Three-dimensional motions develop only after overturns are created as a result
of the initial two-dimensional instability. The overturns induce a region of statically
unstable fluid which is followed by a three-dimensional convective instability. This
convective instability generates longitudinal rolls that account for roughly half of the
dissipation when compared to the dissipation in the two-dimensional computations.
Dissipation of wave energy is maximized when the steepness is the same as the non-
dimensional interface thickness, or when ka ∼ kδ. The scale of the overturns in an
interfacial wave with a thinner interface is too small to influence the overall character
of the wave, and hence the result is localized mixing that thickens the interface
without too much effect on the wave amplitude. On the other hand, waves with a non-
dimensional interface thickness that is greater than the steepness contain weak two-
dimensional convective billows that are also not energetic enough to cause significant
dissipation and mixing. Instead, the larger motions develop wave components that
introduce an oscillatory character to the wave, and through nonlinear interactions,
induce sporatic breaking after the initial breaking event.

Upon wave breaking, the background potential energy rises irreversibly and the
available potential energy is lost irreversibly to viscosity. The efficiency with which
the breaking process mixes the density field is calculated in one of two ways. The first
is calculated by computing the changes in available and background potential energy
before and after wave breaking, and using these to compute a mixing efficiency. This
bulk mixing efficiency is estimated to be ηB = 0.42 ± 0.07 and is a weak function
of the interface thickness. The second method of computing the mixing efficiency
is by using the instantaneous rate of increase of the background potential energy
and the instantaneous dissipation. The maximum instantaneous mixing efficiency is
given by η = 0.36±0.02, and it is also weakly dependent upon the interface thickness.
Compared with other values in the literature which are computed for turbulent mixing
events, the maximum instantaneous mixing efficiency is quite large, indicating that
the turbulent mixing is convectively driven.
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Appendix. Modal analysis
This appendix outlines the methodology used to obtain the linearized wave

frequency ω given an interface thickness kδ.

A.1. Non-dimensional Sturm–Liouville problem

The linearized non-hydrostatic equations of motion within a two-dimensional
stratified fluid are given by

∂u

∂t
= − 1

ρ0

∂p

∂x
, (A 1)

∂w

∂t
= − 1

ρ0

∂p

∂z
− ρ

ρ0

g, (A 2)
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∂ρ

∂t
=

ρ0N
2

g
w, (A 3)

∂u

∂x
+

∂w

∂z
= 0, (A 4)

where all quantities represent perturbations from a state of rest in which the
background density profile is used to define the buoyancy frequency as

N2 = − g

ρ0

dρ

dz
. (A 5)

Solving for w in the linearized equations of motion yields

∂2

∂t2

(
∂2w

∂x2
+

∂2w

∂z2

)
+ N 2 ∂2w

∂x2
= 0. (A 6)

Assuming a modal decomposition of the form

w =

∞∑
n=0

wnΨn(z), (A 7)

where wn = ŵn exp(i(knx − ωnt)), and substitution of w into equation (A 6) results in
the eigenvalue problem

1(
N2 − ω2

n

) d2Ψn

dz2
+

1

c2
n

Ψn =0, (A 8)

where each eigenfunction Ψn propagates at the the speed cn = ωn/kn. The boundary
conditions on equation (A 8) require that

Ψn = 0 z = 0, −d, (A 9)

in order to satisfy the no-flux boundary condition at the upper and lower boundaries.
It is acceptable to require that both the horizontal and vertical velocities vanish at
z = 0 and z = −d since we will assume a priori that the modes propagate as deep-water
waves and are not affected by the upper and lower boundaries of the domain.

The initial non-dimensional density profile in the simulations is given by

ρ ′(z′) = 1
2
tanh

[
2
kd

kδ
tanh−1 α

(
z′ − 1

2

)]
, (A 10)

where ρ ′ = ρ/�ρ, z′ = z/d and α = 0.99. Defining ωn =N0ω
′
n and N = N0N

′, where
N 2

0 = g/d , the non-dimensional Brunt–Väissälä frequency becomes

(N ′)2 = −�ρ

ρ0

dρ ′

dz′ . (A 11)

The ordinary differential equation (A 8) along with the boundary conditions
(A 9) can then be non-dimensionalized so that the non-dimensional Sturm–Liouville
problem becomes

1(
N2 − ω2

n

) ∂2Ψn

∂z2
+ λnΨn = 0 (A 12)

Ψn = 0, z = 0, −1, (A 13)

where λ1/2
n = dN0/cn, and the primes have been omitted for clarity.
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Figure 31. (a) Density and (b) grid distributions used to solve the Sturm–Liouville problem
(A12) for k0δ = π/10, 2π/5, 7π/10, and π. Every other grid point is shown for clarity.

A.2. Numerical solution

The Sturm–Liouville problem is discretized with a second-order centred finite-
difference discretization on an arbitrarily spaced mesh such that the discretized
form of equation (A 12) is given by the tridiagonal system

Aiψi−1 + Biψi + Ciψi+1 − λnψi = 0, (A 14)

in which the coefficents are given by

Ai = − 2(
N2

i − ω2
n

)
(zi+1 − zi−1)(zi − zi−1)

,

Bi =
2(

N2
i − ω2

n

)
(zi+1 − zi−1)

(
1

zi+1 − zi

+
1

zi − zi−1

)
, (A 15)

Ci = − 2(
N2

i − ω2
n

)
(zi+1 − zi−1)(zi+1 − zi)

,

for i =2, . . . , Mi − 1, where Mi is the number of points discretizing the domain,
including ghost points. Applying the boundary conditions (A 13) results in

B2 → B2 − A2,

BMi−1 → BMi−1 − CMi−1.

The ψi which satisfy equation (A 14) then solve the eigenvalue problem for the real
tridiagonal non-symmetric matrix A ∈ �(Mi−2)×(Mi−2),

(A − λnI)Ψn = 0, (A 16)

where Ψn = [ψ2, ψ3, . . . , ψMi−1] ∈ �Mi−2 is the nth eigenvector corresponding to the
eigenvalue λn. Since we are interested in the first, or fastest, mode, this corresponds
to the smallest eigenvalue of A, or λ0.

In general, given a wavenumber k0, we would like to obtain the first mode eigenvalue
λ0 to determine the frequency ω0 or phase speed c0. Therefore, a Newton iteration is
required. With k0d = 3π, we iterate to obtain the eigenvalue λ0 for k0δ = mπ/10, where
m = [1, . . . , 10]. The density fields are shown in figure 31(a), and the 128-point grid
we use to discretize the equations is shown in figure 31(b). Figure 32(a) depicts the
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Figure 32. (a) First mode solution Ψ0 to the non-dimensional Sturm–Liouville problem

(A12) and (b) its associated minimum eigenvalue λ
1/2
0 for k0δ = π/10, 2π/5, 7π/10 and π.

first mode solution Ψ0 for each k0δ, corresponding to the minimum eigenvalue λ
1/2
0 ,

shown in figure 32(b).
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